EPUB for archival preservation

Johan van der Knijff
KB/ National Library of the Netherlands
20 July 2012
Version for external distribution
Table of Contents

1 Introduction

1.1 Background and scope of this report

1.2 Note on preservation objectives

1.3 Note on terminology

1.4 Outline

1.5 Acknowledgements

2 The EPUB format: an overview

2.1 What is EPUB?

2.2 Identifiers

2.3 EPUB in a nutshell

2.4 Specifications

2.5 A note on Publication Resources

2.6 Example

2.7 Note on file and directory naming

3 Core media types

3.1 Core media types in EPUB 2 and 3

4 Package and Navigation Document

4.1 The Package Document

4.2 The Navigation Document

5 Functionality

5.1 Layout and appearance capabilities

 Reflowable content versus fixed page layout

 EPUB 2

 EPUB 3

 Significance for preservation

5.2 Multimedia
Significance for preservation ... 14

5.3 Scripting .. 14

Significance for preservation ... 14

6 Processing EPUB: characterisation .. 15

6.1 Test data .. 15

6.2 Identification ... 15

DROID... 15

Fido.. 15

Unix File Utility... 15

Apache Tika ... 16

Test results... 16

6.3 Validation: EpubCheck .. 17

Overview of results .. 17

Results PUB_A ... 17

Results PUB_B ... 17

Results EPUB3.. 18

Deployment in automated workflows ... 18

6.4 Validation: FlightCrew ... 18

Overview of results .. 18

Results PUB_A ... 19

Results PUB_B ... 19

Deployment in automated workflows ... 20

6.5 Validation: EpubCheck vs FlightCrew ... 20

6.6 Feature extraction.. 20

Epub-tools... 20

Apache Tika .. 21

Other feature extraction tools .. 21
7 EPUB as a preservation format

7.1 Ubiquity, support and interoperability

EPUB 2

EPUB 3

Significance for preservation

7.2 Disclosure

Significance for preservation

7.3 Documentation quality

Significance for preservation

7.4 Stability

Significance for preservation

7.5 Ease of identification, validation and feature extraction

Significance for preservation

7.6 Intellectual Property Rights

Significance for preservation

7.7 Technical protection

Significance for preservation

7.8 Transparency and complexity

Significance for preservation

7.9 External references

EPUB 2

EPUB 3

Significance for preservation

7.10 Authenticity: digital signatures

Significance for preservation

7.11 Re-usability

Significance for preservation
1 Introduction

1.1 Background and scope of this report
Over the last few years, the EPUB format has become increasingly popular in the consumer market. A number of publishers have indicated their wish to use EPUB for supplying their electronic publications to the KB. In response to this, the KB’s Departments of Collection and Collection Care requested an initial study to investigate the suitability of the format for archival preservation. The main questions were:

- What are the main characteristics of EPUB?
- What functionality does EPUB provide, and is this sufficient for representing e.g. content with sophisticated layout and typography requirements?
- How well is the format supported by software tools that are used in (pre-)ingest workflows?
- How suitable is the format for archival preservation? What are the main risks?

In this report I will try to answer these questions as well as possible.

1.2 Note on preservation objectives
The preservation of (digital) objects is typically driven by specific levels and objectives. For instance, one may only be interested in preserving the original bits, the text that is represented by these bits, or, at the highest level, the text with its original layout and appearance, including graphics. Since EPUB is essentially a reflowable document format, concepts such as “original look and feel” do not apply as easily as, for example, a fixed-layout formats such as PDF. Chapter 5 discusses this in more detail. However, it is important to point out here that this report doesn’t make any assumptions about the specific preservation objectives, even though it does highlight the main areas of concern.

1.3 Note on terminology
The EPUB format is defined by a set of separate specifications. The naming of these specifications (as well as a lot of other EPUB-related terminology) was changed between EPUB 2 and 3. In an attempt to keep any confusion to a minimum, I decided to stick to the terminology that is used in EPUB 3 wherever possible. The most important EPUB 2 equivalents are referred to in footnotes.

1.4 Outline
Chapter 2 gives a brief introduction to EPUB. It presents a simple example that illustrates the general structure of an EPUB file. Chapters 3 and 4 go more in-depth, focusing on Core Media Types and the Package and Navigation Documents. Chapter 5 discusses the functionality that is provided by EPUB. In particular, it covers layout and appearance, and the support for multimedia and scripting. For each of these aspects it also explains the differences that exist between versions 2 and 3 of the format. Processing EPUB in an
operational (pre-)ingest workflow requires software tools that are able to provide information about each file object (characterisation). Chapter 6 reviews the main available tools. It also includes some tests on 3 data sets. Chapter 7 reviews the overall suitability of EPUB as a preservation format. This is done by evaluating the format against a set of widely used criteria (adapted from The National Archives and Library of Congress). Finally, Chapter 8 wraps up the main conclusions, and provides some recommendations.

1.5 Acknowledgements
Barbara Sierman is thanked for providing feedback on an early draft of this report. Thanks go out to Thomas Ledoux (Bibliothèque Nationale de France), Misty De Meo (Canadian Museum for Human Rights), Peter May and Andy Jackson (British Library) for their comments to the June 2012 version. Their input has resulted in a number of improvements in the current version.
2 The EPUB format: an overview

2.1 What is EPUB?

EPUB is a file format for digital publications and documents. It has its origins in the Open eBook format, a legacy format that was released by the company SoftBook Press, Inc. in 1999 [1]. Further development under the umbrella of the International Digital Publishing Forum [2] resulted in the first release (2.0) of EPUB in 2007. By then it had also become an official standard. This was followed by a minor revision (2.0.1) in 2010, and a major revision (3.0) in 2011. The current (October 2011) version is 3.0.

2.2 Identifiers

As of May 2012, EPUB does not have a registered Internet Media (MIME) Type [3], although the unofficial application/epub+zip is sometimes used [4]. Also, EPUB is not included in the PRONOM registry, and does not have a Pronom Unique Identifier (PUID).

2.3 EPUB in a nutshell

Before going into any details, it is helpful to first outline the general structure of the format. Conceptually, an EPUB file is just an ordinary ZIP [5] archive. Inside the archive, the contents of a publication are (in the simplest case) represented as one or more XHTML files, which may be organised in one or more directories. CSS files (Cascading Style Sheets) are used to define layout and formatting. In addition, a number of XML files provide various kinds of (mostly structural) metadata. At a very basic level, an EPUB file could be described as "a webpage inside a ZIP file", although this is a bit of an oversimplification. Unsurprisingly, the EPUB format is largely based on existing web standards.

2.4 Specifications

Version 3, which is the most recent version of the EPUB format, is defined by a set of four separate specifications: ¹

- EPUB Publications [6]. This defines the various components that make up a publication, and how these components are tied together. ²

- EPUB Content Documents [7] specifies how content is represented. More specifically, it defines profiles of XHTML, SVG and CSS.³

- EPUB Open Container Format [8]. This defines how the components of an EPUB publication are encapsulated into a single ZIP file ⁴

¹Note that this report follows the terminology of EPUB 3 here. Confusingly the EPUB 2 equivalents of these specifications are named differently; see footnotes below.

²In EPUB 2 this is called "Open Packaging Format" (OPF).

³In EPUB 2 this is called "Open Publication Structure" (OPS).
• **EPUB Media Overlays** [9] defines how text and audio (e.g. using text-to-speech technology, or pre-recorded audio clips) are synchronised.

2.5 A note on Publication Resources

The *EPUB* specification uses the term **Publication Resource** to indicate any individual component that is part of a publication. For example, an *XHTML* file that contains one chapter of a book is a Publication Resource, and so is the *Package Document* (described below) that contains bibliographic and structural metadata.

2.6 Example

The general structure of *EPUB* can be best shown using a simple example. Figure 1 below shows the contents of a (fairly simple) *EPUB 3* file.

![Structure of an EPUB 3 file](image)

Figure 1 Structure of an EPUB 3 file. Gray rectangles are files, all other elements represent directories.

4 In *EPUB 2* this is called "Open Container Format" (*OCF*).

5 As this was introduced in *EPUB 3*, there is no *EPUB 2* equivalent. Also, note that *EPUB Media Overlays* are outside the scope of the current document.
As explained in the previous section, it is an ordinary ZIP archive. Inside it is a file system. At the highest level there are three elements:

1. A *mimetype* file, which must be uncompressed. It contains a text string that enables viewer applications to identify the file as *EPUB*.

2. A directory called *META-INF*. It contains a *container.xml* file, which points to one or more *root* files. A *root* file is the *Package Document*, which is described below.

3. A directory called *OPS*. It contains all *Content Documents*, including:

 - A *Package Document*, which holds bibliographic and structural metadata. Importantly, it specifies all the publication’s Publication Resources, including their locations.
 - A set of *XHTML Content Documents* (in the example each corresponds to one book chapter).
 - A style sheet.

2.7 Note on file and directory naming

The naming of files and directories, and the structure of their contents, are not fixed. Exceptions are the *mimetype* file, and the *META-INF* directory (and its contents). These files and this directory are compulsory, and they should be located at these exact respective locations within each *EPUB* file. The document contents (which are stored in an *OPS* directory in this example) may be organised in any arbitrary manner, provided that the organisation is defined in the *Package Document* (which is located through *container.xml* in *META-INF*, and this file should always be present at this exact location).

The example in Figure 1 is fairly minimal, as an *EPUB* publication may also contain images, multimedia files, fonts, scripts and additional metadata. Also, text content of *EPUB 2* publications may be in *DTBook* [10] format rather than *XHTML*. This will all be covered in more detail in the following chapters.

In the following chapters we will examine these standards in more detail.

6 The *META-INF* directory may also contain a number of optional files, which are related to encryption, digital rights management, and metadata. In addition it may contain a file with digital signatures of individual resources (i.e. files), which is useful for establishing the authenticity of the publication’s contents.
3 Core media types

The previous chapter explained how an EPUB file is actually a ZIP archive that contains a collection of separate file objects, which are called Publication Resources. These Publication Resources can have a number of file formats. The allowed formats are defined in the EPUB Publications specification as a list of Core Media Types. A Core Media Type is defined as "a set of Publication Resource types for which no fallback is required" [6].

Put simply, the Core Media Types define a set of file formats that must be supported by any EPUB viewer application. Resources that have a different format are called Foreign Resources. Foreign Resources are allowed in EPUB, but there are some restrictions. Most importantly, there must be a fallback to a Core Media Type in case the Foreign Resource cannot be rendered. An example: suppose that an EPUB file contains a JP2 (JPEG 2000 Part 1) image. JP2 is not a Core Media Type, and viewer applications may not be able to render such resources. In this case, the EPUB file must contain an alternative representation of the image, using a format that is a Core Media Type. This could be, for example, a JPEG image.

3.1 Core media types in EPUB 2 and 3

Tables 1 and 2 below list the Core Media Types of EPUB 2 and EPUB 3, respectively.

<table>
<thead>
<tr>
<th>Media Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>image/gif</td>
<td>GIF Images</td>
</tr>
<tr>
<td>image/jpeg</td>
<td>JPEG Images</td>
</tr>
<tr>
<td>image/png</td>
<td>PNG Images</td>
</tr>
<tr>
<td>image/svg+xml</td>
<td>SVG documents</td>
</tr>
<tr>
<td>application/xhtml+xml</td>
<td>XHTML1.1 Content Documents</td>
</tr>
<tr>
<td>application/x-dtbook+xml</td>
<td>Digital Talking Book Documents</td>
</tr>
<tr>
<td>text/css</td>
<td>CSS 2.0</td>
</tr>
<tr>
<td>application/xml</td>
<td>XML</td>
</tr>
<tr>
<td>text/x-oeb1-document</td>
<td>Open eBook Publication Structure Document (deprecated)</td>
</tr>
<tr>
<td>text/x-oeb1-css</td>
<td>Open eBook Publication Structure CSS (deprecated)</td>
</tr>
<tr>
<td>application/x-dtbnx+xml</td>
<td>NCX</td>
</tr>
</tbody>
</table>

Table 1 Core Media Types EPUB 2.
<table>
<thead>
<tr>
<th>Media Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>image/gif</td>
<td>GIF Images</td>
</tr>
<tr>
<td>image/jpeg</td>
<td>JPEG Images</td>
</tr>
<tr>
<td>image/png</td>
<td>PNG Images</td>
</tr>
<tr>
<td>image/svg+xml</td>
<td>SVG documents</td>
</tr>
<tr>
<td>application/xhtml+xml</td>
<td>XHTML5 Content Documents, EPUB Navigation</td>
</tr>
<tr>
<td>application/x-dtbncx+xml</td>
<td>NCX (superseded)</td>
</tr>
<tr>
<td>application/vnd.ms-opentype</td>
<td>OpenType fonts</td>
</tr>
<tr>
<td>application/font-woff</td>
<td>WOFF fonts</td>
</tr>
<tr>
<td>application/xml</td>
<td>Media Overlay Documents</td>
</tr>
<tr>
<td>application/pls+xml</td>
<td>Text-to-Speech Pronunciation lexicons</td>
</tr>
<tr>
<td>audio/mpeg</td>
<td>MP3 audio</td>
</tr>
<tr>
<td>audio/mp4</td>
<td>AAC LC audio using MP4 container</td>
</tr>
<tr>
<td>text/css</td>
<td>EPUB Style Sheets</td>
</tr>
<tr>
<td>text/javascript</td>
<td>Scripts</td>
</tr>
</tbody>
</table>

Table 2 Core Media Types EPUB 3.

Note that EPUB 2 contains two deprecated Core Media Types, both of which are remnants from the Open eBook format that was the predecessor of EPUB. Most of the Core Media Types of EPUB 3 are also supported by EPUB 2, with the exception of fonts (OpenType and WOFF), Media Overlay Documents, Text-to-Speech Overlay documents, MP3 and AAC LC Audio and scripts.

In addition, for Content Documents EPUB 2 allowed the use of the Digital Talking Book format [10] as an alternative to XHTML1.1. This is no longer the case in EPUB 3. However, Section 2.2 (Reading System Conformance) of EPUB Publications (which is part of EPUB 3) states that "[a]n EPUB Reading System (...) should process EPUB version 2 Publications (..)"[6]. This means that most viewer applications should be able to render EPUB 2 publications without problems.

Finally, although both EPUB versions may (and usually will) contain XHTML, EPUB 2 uses XHTML1.1, whereas EPUB 3 is based on XHTML5. The main implication of this is that EPUB 3 files may not render correctly on viewers that were designed for EPUB 2.

7Besides, the DTBook format is also XML-based, which makes the interpretation of these files relatively straightforward
4 Package and Navigation Document

4.1 The Package Document

The Package Document is a resource that contains bibliographic and structural metadata. It is the primary source of information about an EPUB publication and its resources. Figure 2 shows a minimal example.

In most cases, The Package Document is made up of the following 3 elements:

- A metadata element, which contains (mainly bibliographic) metadata.
- A manifest element (known as the Publication Manifest). This identifies and describes the resources that make up a publication. It includes the MIME type [3] of each resource.
- A spine element, which specifies the default reading order.

The above elements are required, and are present in any EPUB publication. In addition, two optional elements may exist that are not discussed here. Further details can be found in Section 3.1 of EPUB Publications 3.0 [6].

4.2 The Navigation Document

The function of the Navigation Document is to provide a mechanism to navigate a publication. It is essentially a hierarchical table of contents. In EPUB 2, the Navigation Document is an .ncx resource. NCX is an acronym of Navigation Control file for XML applications. It is an XML resource, and its precise makeup is defined by [11]. In EPUB 3 the .ncx file is superseded by a Navigation Document in XHTML format [7]. An EPUB 3 publication may nevertheless contain an NCX resource for compatibility reasons. This will enable EPUB 2 viewer applications to read EPUB 3 publications 8.

The navigation document also supports the definition of page numbers. This is done through the pageList element in the .ncx file (EPUB 2), or the page-list nav element in EPUB 3 [7].

8If such publications contain features that are not defined by the EPUB 2 format, they may not be displayed properly.
Figure 2 Minimal Package Document.
5 Functionality

5.1 Layout and appearance capabilities

The layout and appearance capabilities of EPUB are not directly relevant for preservation. However, they do put constraints on which materials are suitable for representing in the format. Since EPUB 2 and 3 show significant differences in this area, this section provides a brief discussion with some examples.

Reflowable content versus fixed page layout

Before getting into any details about EPUB’s layout capabilities, it is important to stress that EPUB is primarily a reflowable document format: content (e.g. text) is presented in a way that fits the viewer device, the viewer software, or the user’s preferences. For instance, changing the text size, or re-sizing the viewer window will cause text to dynamically re-flow to fit the viewer. The Figures 3, 4, 5 and 6 illustrate this (for this example I used Adobe’s Digital Editions viewer). This behaviour is unlike PDF, which uses fixed-size pages, where all page elements (text, images) are positioned at a fixed position on each page, at a fixed size. However, fixed-page layouts are possible in EPUB 3 (see discussion below).

Figure 3 Page 9 of ‘Lanseloet van Denemarken’, note 2-column view

Inleiding

Een abel spel van Lanseloet van Deenenkerken hoe li wert minnende eue jonckvreu die met synder moeder diende, sneed de kopijst van het handschrift Van Hulthems boven dit spel. Zijn verschrijving in het woord moeder (moeder = moordenaar) breekt ons, onbedoeld, meteen bij de interpretatie van het stuk. Lanseloet sterft immers aan deze liefde omdat zijn moeder hem verhonden heeft met het meisje Sanderijn te trouwen. Vlak voor zijn dood verwijt hij haar zelf nog zijn ongeluk omdat zij hem de verkoorde raad gegeven heeft (vs. 906–909). Is zij daardoor schuldig aan moord op haar zoon? Wie het stuk aanschijnlijk bestudeert, zal ontdekken dat er veel meer aan de hand is: Lanseloet van Deenenkerken is een intrigerende liefdesgeschiedenis die de eeuwen door heeft weten te boeren en ook in onze tijd telkens weer wordt uitgegeven, bestudeerd en opgevoerd.

Inhoud

Op het toneel verschijnt een proloogspreeker. Hij begint met een rede tot God en Maria en roept dan tot de toeschouwers: Na hoert wat men u spelen sal (vs. 8). Vervolgens vertelt hij dat het stuk handelt over een voornaam ridderschap jonkvrouwe. De ridder houdt van haar maar zij is beneden zijn stand en daaren verzet zijn moeder zich tegen deze liefde. Na een kort verzoek om stilte verzoekt de proloogspreeker van het toneel en dan begint het abel spel Lanseloet van Deenenkerken. We zijn er getuige van hoe Lanseloet de schone Sanderijn zijn liefde verklaart en hoe hij probeert haar te verleiden. Maar zij weigert hoffelijk, doch beslist: het stadsverschilt maakt een huwelijksdruis tussen hen onmogelijk en voor een avontuurje is zij niet te vinden. Ook Lanselenets moeder probeert hem van Sanderijn te doen afzien maar als dat niet lukt, belooft zij hem het meisje voor één nacht, op voorwaarde dat hij haar na het liefdesspel zal versfoen. Hoewel Lanseloet dit vleiine plan volledig doorloopt, gaat hij akkoord. Hij hoopt maar dat
Inleiding

Een abel spel van Lanseloet van Denemerkon hoe hi wert minnende ene joncfrou die met sjijnder moorder diende, schreef de kopiist van het handschrift-Van Hulthem boven dit spel. Zijn verschrijving in het woord moeder (moorder = moordenaar) brengt ons, onbedoeld, meteen bij de interpretatie van het stuk. Lanseloet stert immers aan deze liefde omdat zijn moeder hem verboden heeft met het meisje Sanderijn te trouwen. Vlak voor zijn dood verwijt hij haar zelf nog zijn ongeluk omdat zij hem de verkeerde raad gegeven heeft (vs. 906–909). Is zij daardoor schuldig aan moord op haar zoon? Wie het stuk aandachtig leest, zal ontdekken dat er veel meer aan de hand is: Lanseloet van Denemerkon is een intrigante liefdesgeschiedenis die de eeuwen door heeft weten te boeien en ook in onze tijd telkens weer wordt uitgegeven, bestudeerd en opgevoerd.

Inhoud

Op het toneel verschijnt een proloogspreker. Hij begint met een bede tot God en Maria en roept dan tot de toeschouwers: Nu hoeft wat men u spelen sal! (vs. 8). Vervolgens vertelt hij dat het stuk handelt over een voornaam ridder en een rechtshapen jonkvrouw. De ridder houdt van haar maar zij is beneden zijn stand en daarom verzet zijn moeder zich tegen deze liefde. Na een kort verzoek om stilte verwijt de proloogspreker van het toneel en dan begint het abel spel Lanseloet van Denemerkon. We zijn er genoeg van hoe Lanseloet de schone Sanderijn zijn liefde verklaart en hoe hij probeert haar te verleiden. Maar zij weigert hoffelijk doch...

Figure 4 Page 9 of ‘Lanseloet van Denemarken’ after window resize, note how text reflows to 1-column view.

Figure 5 Page 9 of ‘Lanseloet van Denemarken’ after increasing text size.
EPUB 2

EPUB 2 only provides limited functionality for controlling the appearance and layout of a publication. As noted by Kasdorf [12], the International Digital Publishing Forum has its origins in the trade publishing sector, and the earlier versions of EPUB reflected this. This means that the format is adequate for most "general audience books" (such as fiction). It is less suitable for textbooks, scientific and technical publications, newspapers, comic books, and so on. The main reason is that such publications often require more advanced layout and typographic capabilities, and these are lacking in EPUB 2.

EPUB 3

One of the aims of EPUB 3 was to overcome the layout and typography limitations of EPUB 2, and through the use of XHTML5 more sophisticated layouts are possible. EPUB 3 also supports a subset of the MathML markup language, which is used to represent mathematical equations 9. Interestingly, the EPUB 3 specification acknowledges that reflowable content may not always be desired, and that in specific cases "content and design are so intertwined they cannot be separated." For such situations, it offers the possibility to create fixed-layout documents[13]. As viewer support for EPUB 3 is still virtually non-existent, it was not possible to do any further assessment of EPUB 3’s advanced layout capabilities at this stage.

9In EPUB 2 mathematical equations can only be represented using graphics files (e.g. PNG)
Significance for preservation
The importance of the above appearance and layout features is that they largely determine which content can be suitably represented in EPUB format. The scope of EPUB 2 is limited to content that doesn’t require any advanced layout and typography. EPUB 3 is designed to support a much wider range of publications.

5.2 Multimedia
Starting with version 3, EPUB supports publications that contain audio and video. EPUB 2 has no multimedia support.

Significance for preservation
Publications that contain multimedia are more difficult (and costly) to preserve, as they generally have more technical dependencies than simple text and image content.

5.3 Scripting
Another addition to EPUB 3 is the possibility to include Javascript resources. This makes it possible to add interactivity.

Significance for preservation
Support for scripting introduces the possibility to include malicious code, which is a security risk. It also raises concerns about privacy, since the scripting functionality can be used to track information about consumers [14].
Processing EPUB: characterisation

Ingest and pre-ingest workflows usually include one or more processing steps to obtain basic information about a digital object, which is needed for its preservation. This is called characterisation, which can be sub-divided into:

- **Identification**: establishes the object’s format.
- **Validation**: verifies whether the object conforms to the format’s specification.
- **Feature extraction**: extracts (mostly technical) meta-information about the object.

Therefore, it is important that software tools exist that provide sufficient support for EPUB. This chapter gives an overview of some (potentially) useful tools for identification, validation and feature extraction. Also included here are a number of preliminary tests. It is important to stress here that the aim of this chapter is primarily to give a first impression of tools that may be relevant to EPUB. It is not intended to be exhaustive, and an in-depth evaluation of these tools could be the subject of a follow-up to this report.

6.1 Test data

For all tests in this chapter the following data sets were used:

- **PUB_A**: a set of 91 EPUB 2 files by publisher PUB
- **PUB_B**: a set of 5 EPUB 2 files by publisher PUB
- **EPUB3**: a set of 26 EPUB 3 files by the International Digital Publishing Forum [15]

6.2 Identification

DROID

DROID (Digital Record Object Identification) is a tool that identifies digital objects using PRONOM format signatures (‘magic numbers’) and/or known file extensions. The identification results are reported as PRONOM-compliant Persistent Unique Identifiers (PUIs). *DROID* is an open-source, platform-independent Java application. It can be used directly from the command line, or, alternatively, using a graphical user interface [16]. Here *DROID* 6.01 was used, with signature file V. 59.

Fido

Fido (Format Identification for Digital Objects) is an identification tool that also uses the PRONOM format signatures. It is essentially a *DROID* clone [17]. Here version 1.0.0 was used.

Unix File Utility

File is a command-line utility that is part of every major Unix and Unix-like operating system. It identifies files based on signatures (‘magic numbers’) stored in a 'magic' file. The
file utility reports identification results as MIME types (and optionally as a text description) [18]. Here File 5.11 was used on a Windows-based system using the Cygwin environment.

Apache Tika

Tika is a software toolkit that “detects and extracts metadata and structured text content from various documents using existing parser libraries” [31]. Like *File*, it identifies files based on signatures (‘magic numbers’), and the results are reported as MIME types. Here *Tika* 1.2 was used.

Test results

I ran *DROID, Fido, File* and *Tika* on the test data. The tables below show the results.

<table>
<thead>
<tr>
<th>Data ID</th>
<th>ID result</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUB_A x-fmt/263,application/zip</td>
<td>(91)</td>
</tr>
<tr>
<td>PUB_B x-fmt/263,application/zip</td>
<td>(5)</td>
</tr>
<tr>
<td>EPUB3 x-fmt/263,application/zip</td>
<td>(26)</td>
</tr>
</tbody>
</table>

Table 3 Identification results, *DROID + Fido* (results as PUID / Internet Media Type).

<table>
<thead>
<tr>
<th>Data ID</th>
<th>ID result</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUB_A application/epub+zip</td>
<td>(91)</td>
</tr>
<tr>
<td>PUB_B application/zip</td>
<td>(5)</td>
</tr>
<tr>
<td>EPUB3 application/epub+zip</td>
<td>(26)</td>
</tr>
</tbody>
</table>

Table 4 Identification results, *File* (results as Internet Media Type).

<table>
<thead>
<tr>
<th>Data ID</th>
<th>ID result</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUB_A application/epub+zip</td>
<td>(91)</td>
</tr>
<tr>
<td>PUB_B application/epub+zip</td>
<td>(5)</td>
</tr>
<tr>
<td>EPUB3 application/epub+zip</td>
<td>(26)</td>
</tr>
</tbody>
</table>

Table 5 Identification results, *Tika* (results as Internet Media Type).

Both *DROID* and *Fido* identify all *EPUBs* as simple *ZIP* files. *File* correctly identifies all files in the *PUB_A* and *EPUB3* data sets. The *PUB_B* files are identified as simple *ZIP* files. This is not related to any shortcoming of *File*, but caused by the fact that the *PUB_B* files are no valid *EPUBs* (see next section). *Tika* identifies *all files as EPUB*, including the (malformed) *PUB_B* ones.

The implication of the above is that of the tested tools both *File* and *Tika* are able to automatically establish the file format of an *EPUB* publication. For *DROID* and *FIDO* the obvious solution would be to create *EPUB* file signatures.

10 Link: http://cygwin.com/

11 As already pointed out before, no official Internet Media Type exists for *EPUB* at this stage, although the unofficial *application/epub+zip* is often used.
6.3 Validation: *EpubCheck*

EpubCheck is a tool that validates *EPUB* files, and it can be used to detect various errors. Most of its development is done by Adobe Systems Incorporated (which is also the copyright owner). It is an open-source, platform-independent *Java* application. It has a command line interface, and can be used as a *Java* library as well. The Wiki on the tool’s homepage [19] includes a detailed description of the validation procedure. For the tests here *EpubCheck* 3.0b5 was used, which supports both versions 2 and 3 of the *EPUB* format.

Overview of results

I used *EpubCheck* to validate the *EPUB* files in each test dataset. The table below summarises the results:

<table>
<thead>
<tr>
<th>Data</th>
<th>Warnings</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUB_A</td>
<td>1 (1 %)</td>
<td>2 (2 %)</td>
</tr>
<tr>
<td>PUB_B</td>
<td>0 (0 %)</td>
<td>5 (100 %)</td>
</tr>
<tr>
<td>EPUB3</td>
<td>4 (7 %)</td>
<td>2 (15 %)</td>
</tr>
</tbody>
</table>

*Table 6 Number of files with warnings and errors, *EpubCheck*.*

What is particularly noteworthy is that all files in the *PUB_B* data set resulted in errors. In the following sections we will look at these results in more detail.

Results *PUB_A*

Two files in the *PUB_A* data set resulted in errors:

- For one file, the Package Document (*OPF*) contains an incorrectly formatted date.
- For another one, it reported that the "id" attribute -which is part of the *navPoint* element in the Navigation Document (*NCX*)- does not have a unique value.

For one file *EpubCheck* gave a warning that the spine (part of the Package Document) "contains only non-linear resources".

Results *PUB_B*

None of the files in the *PUB_B* data set passed validation by *EpubCheck*. They all produced the following errors:

- *Mimetype contains wrong type (application/epub+zip expected)* – the Open Container Format specification states that the *mimetype* resource must be the first file in the container, and that it must be *uncompressed*. A check in a hex editor revealed that the *mimetype* resource in the *PUB_B* files is actually *compressed*. As a result, the correct media type (which should be the text string *application/epub+zip*, starting at byte offset 38) cannot be established. This also explains why *File* cannot correctly identify the *PUB_B* *EPUBs*. Interestingly, Apache *Tika* is nevertheless able to identify them.

- *File listed in reference element in guide was not declared in OPF manifest* - this is caused by the fact that the Package Document (*OPF*) contains references to resources that are not declared in the *Publication Manifest*.
• Referenced resource missing in the package - essentially the same as above: the Package Document (OPF) contains references to resources that are not part of the package.

In addition, for one file the following error was reported as well:

• The "id" attribute does not have a unique value (see above)

Results EPUB3
The analysis of the EPUB3 data set yielded the following error for 2 files:

• Font-face reference OPS/Font/AGaramondPro-Regular-0908.otf to non-standard font type application/x-font-otf - appears to be caused by a reference to a mimetype (application/x-font-otf) that is not a Core Media Type.

In addition, the following warning messages occurred:

• resource EPUB/OldStandard-Regular.obf.otf cannot be decrypted - this message occurred for a file with embedded fonts that use font obfuscation.

• item (EPUB/examples/figure-gallery-example.html) exists in the zip file, but is not declared in the OPF file

• File name contains non-ascii characters - this warning message was produced for a Japanese-language file that contains resources that have names which include non-ascii characters.

Deployment in automated workflows
One potential problem of EpubCheck is that it produces output that is fairly unstructured. If a file passes all tests, the message "No errors or warnings detected" is written to the standard output device (stdout). If the validation results in any errors or warnings, these are written to the standard error device (stderr). However, stderr is used for reporting internal EpubCheck exceptions as well, and stdout is also used for informational messages. Having said this, deployment of EpubCheck in an automated workflow is certainly possible, but it would require some tweaking of its output.

6.4 Validation: FlightCrew
FlightCrew is another EPUB validator that was developed as an alternative to EpubCheck. Its authors claim that it is a 'better' EPUB validator than EpubCheck. FlightCrew is written in C++, and released under an open-source license. It comprises a library, a command-line interface and a graphical user interface [32]. All tests were done using FlightCrew 0.7.2, which only supports version 2 of the EPUB format.

Overview of results
I used FlightCrew to validate all EPUB 2 files in the test data (i.e. PUB_A and PUB_B; EPUB3 isn't included as FlightCrew doesn't support EPUB 3). The table below summarises the results:
Again all files in the **PUB_B** data set resulted in errors. In the following sections we will look at these results in more detail.

Results PUB_A

In the **PUB_A** data set the following errors were reported:

- For two files, the Package Document (**OPF**) contains an incorrectly formatted date.

- For three files, the occurrence of a non-allowed elements was reported in **HTML** resources (**`element 'a' is not allowed for content model (br|span|bdo|map|object|img|svg|tt|j|b|big|small|em|strong|dfn|code|q|samp|kbd|var|cite|abbr|acronym|sub|sup|input|select|textarea|label|button|ins|del|script)`**)

- For four files, errors were reported on items in the Package Document (**OPF**) that are using the wrong media type. In most cases these errors referred to embedded OpenType fonts (**`The <item> element's "media-type" attribute has value "application/vnd.ms-opentype", but the file's media type is "application/x-font-ttf".`**). This appears to be related to the fact that there is no ‘official’ mimetype for OpenType fonts. **FlightCrew** enforces the use of **application/x-font-ttf** (claiming that this is the de facto standard), whereas the **EPUB** specifications use **application/vnd.ms-opentype** throughout [33].

In addition, the following warning was reported for 6 files:

- **‘This resource is present in the OPF <manifest>, but it's not reachable (it's unused).’** In each case it refers to embedded font files that are declared in the manifest, but which are not actually used (i.e. referred to elsewhere).

Results PUB_B

Similar to **EpubCheck**, none of the files in the **PUB_B** data set passed validation by **FlightCrew**. They all produced the following errors:

- **Bytes 30-60 of your epub file are invalid** – this is caused by the fact that the **mimetype** resource in the **PUB_B** files is not uncompressed.

- **This resource is reachable but not present in the OPF <manifest>** - this is caused by the fact that the Package Document (**OPF**) contains references to resources that are not declared in the **Publication Manifest**.

- **This OPS document is reachable but not present in the OPF <spine>** - essentially the same as above: the Package Document (**OPF**) contains references to resources that are not part of the package.

- **The <reference> element's "type" attribute has value "copyright" which is not an OPF-specified value**
In addition, for three files the following error was reported as well:

- The `<item>` element’s "media-type" attribute has value "application/vnd.adobe.page-template+xml", but the file’s media type is "application/vnd.adobe-page-template+xml" – again this is caused by a supposedly incorrect mimetype declaration.

Deployment in automated workflows

Much like EpubCheck, FlightCrew’s output is pretty unstructured and not optimally suited to automatic processing. If a file passes all tests, the message "No problems found" is written to the standard output device (stdout). If the validation results in any errors or warnings, these are written to the standard error device (stderr). Having said this, deployment of FlightCrew in an automated workflow is certainly possible, but it would require some tweaking of its output. Also, unlike EpubCheck, FlightCrew has a unique number assigned to each specific error, which may also make automated processing somewhat easier.

6.5 Validation: EpubCheck vs FlightCrew

It is beyond the scope of this report to provide a detailed comparison between EpubCheck and FlightCrew. However, from the tests some preliminary observations can be made. First of all, FlightCrew generally appears to be more strict than EpubCheck, resulting in more reported errors. In some cases the nature of these “errors” is debatable (this applies in particular to the “media-type” related errors, since the affected media types are often not well defined). For the tested files both tools were generally in agreement (although FlightCrew reported more errors). Interestingly, whereas EpubCheck identified a non-unique "id" attribute in the Navigation Document (NCX) in one of the PUB_A files, FlightCrew didn’t report any similar error. Unfortunately FlightCrew’s documentation is pretty minimal compared to EpubCheck, which makes it difficult to make a comparison between both tools.

Also, the error messages generated by FlightCrew are generally more verbose and specific than those reported by EpubCheck. Unlike EpubCheck, each error in FlightCrew has a unique number, which may make automated processing somewhat easier. A limitation of FlightCrew is that it doesn’t (yet) support EPUB 3. Also, even though a formal assessment of the computational performance was not part of the current evaluation, FlightCrew appeared to be comparatively slow, on one occasion needing almost 3 minutes (!) to analyse a single 1.3 MB file. So, concluding, more elaborate testing would be needed to decide on either validation tool in any operational setting.

6.6 Feature extraction

Epub-tools

Epub-tools is an open-source "suite of command-line utilities for creating and manipulating epub book files" [20]. It is written in Haskell, and the author is Dino Morelli. It includes an epubmeta utility, which extracts and displays metadata from an EPUB file. However, it only extracts information from the Package Document. It does not provide any information on whether an EPUB contains encrypted content or uses digital rights management technology. It is unclear to what extent EPUB 3 is supported (although some quick tests on the EPUB3 data set showed that epubmeta is able to extract metadata from these files).
All in all, *epub-tools* will most likely not be overly useful in a pre-ingest workflow. It doesn't provide any information about those very features of *EPUB* that, within an archiving context, are potentially the most problematic of the format.

Apache Tika

Tika [31], which was already mentioned in section 6.2, also includes metadata extraction functionality. However, like *Epub-tools*, it only extracts metadata from the Package Document, without providing any information on encryption or digital rights management technology.

Other feature extraction tools

To the best of my knowledge there are currently no other feature extraction tools for *EPUB*. However, since the format is based on established standards (e.g. *ZIP, XML*) that are widely supported by existing programming libraries, building such a tool would be fairly straightforward. It is also something that could be done with limited amounts of time and resources.
7 EPUB as a preservation format

This chapter discusses the suitability of EPUB as a preservation format. The criteria used here are taken (and in a number of cases adapted) from [21] (The National Archives) and [22] (Library of Congress). If relevant, the outcome of each of these criteria is discussed separately for EPUB 2 and EPUB 3. Readers should also be aware that the Sustainability of Digital Formats website of Library of Congress contains entries on both EPUB 2 and 3 [23],[24].

7.1 Ubiquity, support and interoperability

EPUB 2

The Wikipedia entry Comparison of e-book formats states that "as of 2011 (EPUB) is the most widely supported vendor-independent XML-based e-book format" [25]. The entry on EPUB lists 22 different viewers that are supporting the format [4], including several open source implementations. Popular ones are, for example, Adobe Digital Editions and the open-source Calibre software. An elaborate discussion of the pros and cons of specific viewers is beyond the scope of this report, but a useful review of some of the most widely-known ones can be found in [26]. EPUB 2 is also supported by many hardware-based reading systems. Even though EPUB 2 is the most popular vendor-independent e-book format, the current e-book market is dominated by proprietary formats, making EPUB a relatively minor player overall.

EPUB 3

At this moment, there are (to my knowledge) no readers that support EPUB 3. The review in [26] lists one reader (out of a total of 21) as supporting EPUB 3; however, it also states that it doesn't (yet) render these files correctly. I did some preliminary tests on the support of multimedia files in two popular EPUB readers: Adobe Digital Editions (version 1.7.2) and Calibre (0.8.49). Both readers were unable to render MP4 video and MP3 audio in an EPUB 3 file that is part of a set of sample data from IDPF [15]. Nevertheless, these files could still be opened, and the text content was readable. An EPUB 3 Fixed Layout document could also be opened in both Digital Editions and Calibre, but both viewers failed to render the page layout correctly. Digital Editions only displayed part of each page, whereas Calibre ended up inserting blank pages. Both viewers were also unable to correctly render a document containing MathML equations. Since the EPUB 3 specification was only released in October 2011, support of this version is likely to improve in the future. The International Digital Publishing Forum (which is also the organisation behind EPUB) has initiated work on an open-source reference implementation called Readium. This is a set of libraries for viewing and creating EPUB content. An early beta version of the software is available as an extension to Google’s Chrome web browser [27].

12 [Link: http://www.adobe.com/products/digitaleditions/]

13 [Link: http://calibre-ebook.com/]
Significance for preservation
Popular formats that are widely supported by (open source) viewer software are unlikely to become inaccessible over time. Formats without sufficient use and support are at risk of becoming obsolete, and long-term access may become problematic.

7.2 Disclosure
EPUB is an open format. The format’s specifications are freely available from the website of the International Digital Publishing Forum [2].

Significance for preservation
For preservation open formats are preferable to closed ones (which are typically proprietary formats whose specifications are trade secrets). Openness ensures that all technical information about the format is publicly available, and avoids dependence on specific software by the owner of the format (vendor lock-in).

7.3 Documentation quality
The documentation of both EPUB 2 and 3 is both comprehensive and complete.

Significance for preservation
Documentation should be of sufficient quality to allow interpretation of files that use the format. This includes the development of new access (e.g. viewer) software.

7.4 Stability
File formats that are suitable for long-term preservation have format specifications that are stable over time, without being subject to constant or major changes between versions [21]. However, a comparison between the specifications of EPUB 2.0 and EPUB 3 shows a number of major changes. Most notable are:

- Deprecation of DTBook content documents
- Change from XHTML1.1 to XHTML5
- Change from CSS2 to a subset of CSS3
- Deprecation of NCX navigation documents
- Added support for audio video and scripts

Also, it is remarkable (and a little confusing) that even the names of the standards that make up EPUB were completely changed between EPUB 2 and 3.

Moreover, EPUB 3 is heavily dependent on (X)HTML5 and CSS3, standards that are still unfinished "works in progress". A formal Recommendation document for HTML5 is currently expected to be finalised some time in 2014 [28]. In the meantime, EPUB 3 will be based on an unfinished standard. This is acknowledged by Kasdorff, who defends the decision to use XHTML5 and CSS3 by stating that the EPUB 3 Working Group selectively specified "those modules of HTML5 and CSS3 that either (1) are in fact considered finished,
for all practical purposes, or (2) are essential to an EPUB 3 requirement and are close enough to resolution that they are reasonably safe to use” (emphasis added by JvdK). He adds that if HTML5 or CSS3 would "change from what EPUB 3 is specifying, EPUB 3 makes the commitment to change along with it”. He also calls this approach "realistic, practical and not as risky as it appears to be” [12]. He does not further substantiate this claim (apart from one general remark about EPUB 3’s use of CSS).

Summarising, various basic features from EPUB 2 have been deprecated or replaced in EPUB 3, and the latter’s dependence on unfinished standards (especially HTML5) implies that further (probably more minor) changes are likely. This lack of stability of the EPUB specification does raise some concerns about the suitability of EPUB as a format for long-term preservation. The assessment by Library of Congress expresses similar concerns [23],[24].

Significance for preservation

If a format is subject to constant major changes over time, this is likely to have a detrimental effect on overall interoperability. Specific versions of the format may only be rendered correctly on specific viewers, and providing backward compatibility will become more difficult.

7.5 Ease of identification, validation and feature extraction

The tests in the previous chapter revealed the following:

- Out of the tested identification tools (Unix File, DROID and Fido), both File and Tika are able to correctly identify EPUB files. DROID and Fido only identify EPUB to the level of the container format (i.e. ZIP). On a related note, EPUB is not yet included in PRONOM, and only an unofficial Internet Media Type exists at this time.

- Validation is possible using Epubcheck and FlightCrew. Both tools were capable of detecting a variety of errors in the test data sets (although FlightCrew doesn’t support EPUB 3 yet). However, not all errors detected by FlightCrew are also picked up by Epubcheck, and vice versa. Also, FlightCrew is finicky (i.e. will report errors) for mimetype declarations that are literally given in the EPUB specification. More elaborate testing would be necessary to assess both tools’ true usefulness. If any of them are used as part of an automated workflow, one should be aware of the somewhat peculiar way they are reporting their output.

- Feature extraction is still rather problematic. Both the metadata-extraction utility from epub-tools and Tika only extract information from an EPUB’s Package Document. This is not sufficient for detecting files that may contain technical protection technology (encryption).

Significance for preservation

The availability of identification, validation and feature extraction tools ensures that file objects can be adequately processed, necessary technical (preservation) metadata can be extracted, and basic quality checks are possible.
7.6 Intellectual Property Rights
Neither EPUB nor any of the standards and formats that are associated with EPUB’s core media types are subject to any known patents or licensing restrictions.

Significance for preservation
Formats may use technology that is subject to patents or other intellectual property restrictions. As these may limit the (future) use of files of such formats, for preservation formats are preferred that not subject to intellectual property restrictions.

7.7 Technical protection
EPUB publications (both 2 and 3) may use Digital Rights Management (DRM) technology. The use of DRM usually means that (part of) the contents of the publication are encrypted. Depending on the exact implementation, viewing such files may be restricted to a registration key that is coupled to specific software, or it may require a password. The EPUB 3 OCF specification does not prescribe any specific DRM method, but it says that this may change in future versions [8]. The current situation is that various vendor-specific methods exist, and any method is allowed. For instance, both Sony and Adobe are using their own DRM methods [29].

EPUB also supports encryption as a means to prevent the re-use of embedded fonts. Because of the use of ZIP as a container format, it is relatively easy to extract and re-use fonts that are embedded within an EPUB file. This raises a problem for most commercially available (i.e. non-free) fonts. In an attempt to discourage users from re-using embedded fonts, the EPUB specification includes a technique called font obfuscation. It works by encrypting the first 1040 bytes of a font file. The encryption method used is relatively simple, and the specification states that a determined user will be able to gain access to the unencrypted font. As such, it is simply meant as a "stumbling block for those who are unaware of the license details of the supplied font" [8].

The first type of encryption (DRM-related) poses a direct threat to the accessibility of EPUB publications, and publications that use this technology should not be accepted for ingest. The second type (font obfuscation) only affects embedded fonts. Since EPUB viewers are required to handle obfuscated fonts,14 accessibility is not immediately at risk. It may affect future migrations to some other format. If the migration tool cannot handle obfuscated fonts, this will alter the appearance of the migrated object. However, because of the simple nature of the encryption involved, decrypting the font files is pretty straightforward. Legal constraints may nevertheless prohibit doing so.

EPUB publications that contain DRM can be identified by the presence of a rights.xml resource in the META-INF directory. An encryption.xml resource in the same directory indicates the presence of encrypted content.

14This only applies to viewers for EPUB 3; EPUB 2 viewers are not even required to handle embedded fonts at all.
Significance for preservation
The use of technical protection technology restricts the (long-term) accessibility of files. Viewing of files may be password-protected, or restricted to certain hardware, software or physical locations. It will also make migration to some alternative format (which may be needed as a preservation action at some point) more difficult, or even impossible.

7.8 Transparency and complexity
Text content in EPUB 2 is either in XHTML1.1 or DtBook (which is XML) format. In EPUB 3 XHTML5 is used. These are all highly transparent and both human- and machine-readable. These formats are also relatively simple. The same is true for the Package and Navigation documents. This transparency disappears for publications that contain encrypted resources. The list of Core Media Types also includes a number of formats that are less transparent and more complex (e.g. image formats, fonts, audio and video), but these are all common formats that are widely supported by existing software, including (open source) programming libraries. EPUB’s mechanism for defining and locating the resources inside each publication is also straightforward. Finally, the use of ZIP as the container format does add some complexity (and reduces overall transparency), but the ubiquity of ZIP means that the contents of an EPUB publication can be inspected by simply opening it with any ZIP tool.

Summarising, EPUB is a fairly transparent format, provided that it doesn’t contain any encrypted resources. The formats used for text content and metadata are relatively simple, although the image, audio and video formats are considerably more complex (and less transparent).

Significance for preservation
Formats that are transparent are generally easier to migrate to some other format, which may be needed as a preservation action at some point. Complex formats can be more difficult (and costly) to manage and preserve.

7.9 External references
EPUB 2
All Publication Resources of an EPUB 2 publication must be located within the EPUB container. EPUB 2 publications may contain references to fonts that are not embedded, and if these fonts are not locally installed on the user’s PC this may affect the appearance of these files. On a side note, even though EPUB 2 permits font embedding, fonts are not included in the list of Core Media Types. As a result, EPUB 2 viewer applications are not required to be capable of handling embedded fonts.

EPUB 3
Section 5.3 of EPUB Publications 3.0 states that all Publication Resources must be located within the EPUB container, with the exception of audio and video resources, which may be located either in the Container or remotely [6]. In the latter case, such resources are known
as *Remote Resources*. Their presence can be identified via the *manifest* in the Package Document 15.

Like *EPUB 2*, *EPUB 3* publications may contain references to non-embedded fonts, which may affect appearance if these are not locally installed on the user’s PC. Unlike *EPUB 2*, Fonts are included in the Core Media Types, so embedding should always result in conforming readers to display them correctly.

Significance for preservation

File objects that contain external references are not self-contained, making their rendering, appearance or functionality dependent on external resources. If the (links to the) external resources are lost, such files may not render as originally intended.

7.10 Authenticity: digital signatures

EPUB (both 2 and 3) supports the use of digital signatures. Like an ordinary signature, the purpose of a digital signature is to demonstrate that a file was created by the person who signed it, and that no changes were made to it afterwards. Digital signatures typically work in the following way. First, a *hash function* is applied to the raw byte data in a file, which produces a so-called *hash value* or *message digest*. This is a fixed-size sequence of bits. The important thing to remember here is that hash functions work in such a way that even the slightest change in their input (here: the data in the file) immediately result in drastic changes in their output. As a next step, the message digest is encrypted using a private key that is known only to the owner or creator of the original document. The encrypted message digest serves as the signature, and is stored. A recipient (or user) of the file can then verify its integrity using a signature verifying algorithm. Given the file’s contents, a public key and the signature, the signature verifying algorithm checks whether the message digest as it is computed from the received file matches the signature. If this is the case, this substantiates the file’s authenticity.

By itself this does not warrant the identity of the owner of the public key. In other words: the signer of a document may pretend to be someone else. Users of digital signatures may therefore register their public key with a certificate authority, which is a third party that issues certificates that contain a user’s public key and information on his or her identity [30].

In *EPUB*, signatures can be created for the publication as a whole, or for individual resources inside it. Signatures are stored in the (optional) *signatures.xml* resource in the *META-INF* directory. A detailed discussion of signatures in *EPUB* can be found in Section 2.5.6 of [8].

Significance for preservation

Digital signatures provide a mechanism for ensuring that a document is authentic and hasn’t been tampered with. This is particularly important in the case of e.g. legal documents.

15Manifest items that are remote resources have a *remote-resources* property.
7.11 Re-usability
Because text content is stored as either XHTML or XML, the logical structure of an EPUB file is explicitly defined. This would make migration to some other XML-based format straightforward, and as a result the contents of an EPUB publication are highly re-usable.

Significance for preservation
Re-usable formats are easier to migrate to some other format, which may be needed as a preservation action at some point.

7.12 Summary
Table 8 summarises the main findings of this chapter, itemized by EPUB version. It also shows the functionality-related aspects that were discussed in Chapter 5.
<table>
<thead>
<tr>
<th></th>
<th>EPUB 2</th>
<th>EPUB 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ubiquity, viewer support</td>
<td>Good (but current e-book market dominated by proprietary formats!)</td>
<td>Poor (no viewer support whatsoever as of May 2012)</td>
</tr>
<tr>
<td>Disclosure</td>
<td>Open, specifications freely available</td>
<td>Open, specifications freely available</td>
</tr>
<tr>
<td>Documentation quality</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Stability</td>
<td>Major changes between EPUB 2 and 3</td>
<td>Major changes between EPUB 2 and 3</td>
</tr>
<tr>
<td>Support identification tools</td>
<td>Good (File, Tika); poor (DROID, FIDO); also no registered identifiers (MIME / PUID)*</td>
<td>Good (File, Tika); poor (DROID, FIDO); also no registered identifiers (MIME / PUID)*</td>
</tr>
<tr>
<td>Support validation tools</td>
<td>Two tools exist, but results not in complete agreement. Handling of output problematic in workflows</td>
<td>One tool exists. Handling of output problematic in workflows</td>
</tr>
<tr>
<td>Support feature extraction tools</td>
<td>Poor (no detection of DRM, encryption)</td>
<td>Poor (no detection of DRM, encryption)</td>
</tr>
<tr>
<td>Intellectual Property Rights</td>
<td>No patents / licensing restrictions</td>
<td>No patents / licensing restrictions</td>
</tr>
<tr>
<td>Technical protection</td>
<td>DRM / encryption possible</td>
<td>DRM / encryption possible</td>
</tr>
<tr>
<td>Transparency</td>
<td>Good in absence of DRM / encryption</td>
<td>Good in absence of DRM / encryption</td>
</tr>
<tr>
<td>Complexity</td>
<td>Low for text and metadata; images and ZIP container increase overall complexity</td>
<td>Low for text and metadata; images, audio, video and ZIP container increase overall complexity</td>
</tr>
<tr>
<td>External references</td>
<td>Not allowed, but references to non-embedded fonts are possible</td>
<td>References to external audio / video and non-embedded fonts are possible</td>
</tr>
<tr>
<td>Authenticity</td>
<td>Support for digital signatures</td>
<td>Support for digital signatures</td>
</tr>
<tr>
<td>Re-usability</td>
<td>Good (XML / HTML content highly re-usable)</td>
<td>Good (XML / HTML content highly re-usable)</td>
</tr>
<tr>
<td>Functionality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced layout / typography</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Fixed layout</td>
<td>No</td>
<td>Yes (optional)</td>
</tr>
<tr>
<td>Scripts</td>
<td>No</td>
<td>Yes (Javascript)</td>
</tr>
<tr>
<td>Multimedia (audio, video)</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 8 Assessment of EPUB 2 and 3: summary of findings related to preservation and functionality.
8 Conclusions and recommendations

This chapter wraps up the main conclusions of this report. It also provides some recommendations.

8.1 Strengths

EPUB has a number of strengths that make it attractive for preservation. It is an open format that is well documented, and there are no known patents or licensing restrictions. It is largely based on well-established and widely-used standards such as *ZIP*, *XML* and *XHTML*. Consequently, the format scores high marks for transparency and re-usability. For situations where authenticity is crucial (e.g. legal documents) all or parts of a document can be digitally signed. Also, *EPUB* 2 is a popular format with excellent viewer support, including several open source implementations.

8.2 Concerns

Despite these strengths, the following observations raise some concerns about *EPUB*’s suitability for preservation.

Dominance of proprietary formats

Even though *EPUB* is the most popular *vendor-independent* e-book format, its role is nevertheless fairly limited because the current e-book market is dominated by proprietary formats.

Stability over time

EPUB 3 shows quite major changes relative to version 2, which raises concerns about the format’s stability over time. These concerns are reinforced by the fact that *EPUB* 3 is heavily dependent on *(X)HTML5* and *CSS3*, both of which are unfinished “works in progress”, which may undergo various changes before being finalised.

No viewer support for *EPUB* 3

At this moment (May 2012) viewer support for *EPUB* 3 is still virtually non-existent. Because of this, *EPUB* 3 is not recommended as an archival format at this point. However, *EPUB* 3 is still in its early stages, and viewer support is likely to improve soon.

Limited support by characterisation tools

The format is not optimally supported by existing characterisation tools. Recent versions of *Unix File* (5.11) and *Apache Tika* (1.2) correctly identify *EPUB* files, but *DROID* and *FIDO* only identify at the level of the container format (*ZIP*). Two validator tools exist, but currently only one of them supports *EPUB* 3. Both tools have output handlers that are not well suited for use in automated workflows. To my knowledge no feature extraction tool exists that is capable of extracting information on aspects such as digital rights management and encryption, both of which are essential within a preservation context.
Impact of digital rights management and encryption

The possibilities for using digital rights management and encryption are a potential threat to the (long-term) accessibility of EPUB files. This is exacerbated by the fact that existing feature extraction tools do not detect the presence of such features.

External references in EPUB 3

Starting with version 3, EPUB files may contain references to audio and video resources that are stored remotely (i.e. not inside the EPUB container). Files that depend on such Remote Resources are not self-contained, and their functionality may not persist over time.

Foreign Resources

Both EPUB 2 and 3 have a list of Core Media Types, which are file formats that must be supported by any EPUB viewer. The use of other formats is allowed, but viewer applications are not required to render them. For such Foreign Resources, a fallback to a file that is a Core Media Type must be defined. This means that such resources have multiple representations, and the representation that is shown to the user (or converted in case the publication is migrated to some other format) will be system-dependent. This introduces a degree of unpredictability that is not desired in an archival document.

Scripts in EPUB 3

Starting with version 3, EPUB files may contain Javascript resources. This introduces a number of potential security and privacy risks, and repositories have to decide how to deal with these.

EPUB 2 not suitable for all content

Finally, not all types of content can be adequately represented in EPUB. EPUB 2 was primarily developed with "general audience books" (e.g. fiction) in mind. It lacks the advanced layout and typographic capabilities that are needed for publications that are heavily dependent on advanced layout and typography. Examples are scientific and technical publications, publications that contain mathematical equations, textbooks and comic books. Also, it does not support fixed-layout documents (i.e. documents with a page layout that is unaffected by the viewing device or viewer settings, similar to PDF). The EPUB 3 specification should overcome these limitations, but viewer support for EPUB 3 is nonexistent at this stage. However, as the EPUB 3 specification was only released by the end of 2011, this may well improve soon. Also, EPUB 2 files may contain embedded fonts, but conforming readers are not required to handle them. This implies that such files may not display as originally intended. Because of all this, EPUB is mainly suitable for simple text-centred publications without any sophisticated layout or typography requirements at this stage. This may change as soon as adoption and viewer support for EPUB 3 start improving.

8.3 Recommendations: EPUB for archival storage

Following the conclusions of this report, a number of recommendations can be made on the acceptance of EPUB files for archival storage:
1. For now16, do not accept EPUB 3 publications, until adoption and viewer support have improved.

2. Do not accept EPUB publications that contain digital rights management and encryption features. Encrypted (obfuscated) fonts may be an exception (although conforming EPUB 2 readers are not even required to handle embedded fonts at all). These features can be detected from the (presence of the) rights.xml and encryption.xml resources in the META-INF directory.

3. Do not accept EPUB publications that contain resources that are not on the list of Core Media Types (i.e. Foreign Resources). These can be detected from the presence of a fallback attribute on the manifest item element that represents the resource in the Package Document.

4. Do not accept EPUB publications that contain Remote Resources17. These can be detected from the presence of the remote-resources property on the manifest item in the Package Document.

5. Be alert for EPUB publications that contain Javascript resources18. These can be detected from the value of media-type on the the manifest item in the Package Document. For Javascript resources, media-type is set to text/javascript.

6. Since EPUB 3 no longer uses the DtBook format as an alternative to XHTML, publications that contain DTBook resources should be avoided. This can be detected from the value of media-type on the the manifest item in the Package Document (which should not be application/x-dtbook+xml).

7. Use Epubcheck or FlightCrew to verify if EPUB files are in accordance with the format's specifications (but keep in mind that both tools may disagree!).

8. For now19, do not use EPUB for publications that are heavily dependent on advanced layout and typography. Examples are scientific and technical publications, publications that contain mathematical equations, textbooks and comic books. Once the adoption and support of EPUB 3 have improved, this recommendation may need to be revised, as EPUB 3 should overcome most of EPUB 2’s current limitations in this regard.

8.4 Community recommendations

The following recommendations are primarily directed at the digital preservation community as a whole:

16July 2012

17Currently only possible for audio and video content in EPUB 3

18Only possible in EPUB 3

19July 2012
1. Add the *EPUB* format to existing file format registries (e.g. *PRONOM*) and create unique identifiers for versions 2 and 3 of the format.

2. Consider initiating a registration procedure for *EPUB* at the *Internet Assigned Numbers Authority* [3].

8.5 Tool recommendations

The following recommendations are mainly aimed at developers who are wishing to contribute to improved characterisation of *EPUB*:

1. Create *EPUB* file signatures for *DROID* and *Fido*.

2. Get involved in the development of *Epubcheck*, and/or *FlightCrew*, and write an alternative (*XML*-based) output handler.

3. Develop a feature extraction tool that goes beyond what *epub-tools* and *Tika* currently do (which only extracts information from the *Package Document*). This should include any information on digital rights management, encryption, and digital signatures (all stored in the *META-INF* directory). Alternatively (and perhaps even better), extend *Epubcheck* and/or *FlightCrew* to report this information (most of which they must be analysing already for the validation).
9 References

[22] Sustainability Factors [Internet]. Available from: http://www.digitalpreservation.gov/formats/sustain/sustain.shtml

